Flipping Coins

Can a Coin Land on it's Edge?


Determine how "fat" a coin would have to be so that landing on its side is reasonable.

Base Difficulty

Medium, because of difficulty of regression (line fitting)


Clearly it is very hard, if not impossible, to land a coin on its side. This is due to the shape of a coin, and the concept of Center of Mass. See the picture below for a high speed photograph of a coin being flipped.

flipping coin
Flipping Coin

Even though the coin may hit its edge, it's essentially impossible for it to stop on its edge.


Now imagine that instead of a single coin, you had a whole roll of 50 coins, like the one below.

It would be almost impossible to throw up a whole roll of coins and not have it land on its side. The same is true for a pencil; however, for a can of soup it seems a lot more likely.

Can of Soup

Somewhere between having 1 coin and having 50 coins, it seems like there should be a number which gives you about equal chance of landing your coin on its top or on its side.

It's your job to figure out how fat your coin needs to be.



Super Glue is generally toxic which means it is not safe to inhale or ingest. Make sure you do the gluing in a well ventilated area, and that you wash your hands before eating.


How many pennies (or other coins) wide will your coin have to be before it lands on its side within the first 40 trials? Obviously you can choose any number between 1 and 50, since your coin must have at least 1 penny and you only brought 50 pennies with you.


  1. Begin your coin with just a single penny.
  2. Take another penny and Super Glue it to the coin.
  3. Wait for your coin to dry
  4. Flip (toss) your coin 40 times and record the number of times it lands on its side.
  5. Repeat steps 2-4 until the coin lands on its side every time.

It may help you to organize your data in a table:

Number of pennies Number of side landings
Trial 1Trial 2Trial 3Trial 4
1 ? ? ? ?
2 ? ? ? ?
...... ... ... ...
50 ? ? ? ?

You should repeat this experiment for at least 4 trials to fill your table and help guarantee accuracy of your results. To do this, flip each version of the coin 40·n times where n is 4 or more. After the first 40 flips, start counting for the second trial. After the next 40 start counting for the third trial, and so on. This way you don't need to waste more pennies than necessary.


Plot the data you acquired (using Excel plotting, perhaps) with the number of pennies in the coin on the x-axis and the number of side landings on the y-axis. You should have as many graphs as you have trials, although you could put all the plots on one graph if you use different colors.

Can you see any trends? Does the number of side landings change dramatically from one thickness to the next? Was your hypothesis correct?